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LETTER TO THE EDITOR 

Correlation of scaled photon-counting fluctuations 
E JAKEMAN, C J OLIVER, E R PIKE and P N PUSEY 
Royal Radar Establishment, Great Malvern, Worcs, UK 

MS received 31 August 1972 

Abstract. The use of scaling for one-bit correlation processing in optical spectros- 
copy of nongaussian signals is discussed. A theoretical proof of its equivalence with 
uniform random clipping, and hence full correlation, is provided in certain cases. 

The technique of digital correlation of photon-counting fluctuations has found appli- 
cation in several fields of science over the last few years. Rather than measuring the 
true photocount (intensity) autocorrelation function, it has been found to be convenient 
in many instances to use ‘single-clipped’ correlation, which is a cross-correlation 
between the direct photocount signal and a one-bit ‘clipped’ version of it (Jakeman 
and Pike 1969, Pike 1972). With clipping, the advantages of one-bit correlation, 
namely simple circuitry and high speed of operation, are obtained at little sacrifice of 
experimental accuracy (Jakeman et al 1971, Pike 1972). However, only for a few 
types of incident electric field statistics, the most important being gaussian statistics, 
can the single-clipped correlation function be simply related to the useful true correla- 
tion functions of the field. 

The wide use of clipping to date has been due to the fact that in the large majority 
of light-scattering experiments the signal statistics are closely gaussian. However, 
there do exist several classes of experiment with nongaussian signal statistics. Among 
these are laser light near threshold (see, for example, Jakeman et al 1970), light 
scattering from particles carried by turbulent fluids (Bourke et al 1970, Di Port0 et al 
1969), and light scattering from small numbers of particles undergoing motion of some 
kind (Adrian 1972, Schaefer and Berne 1972, Schaefer and Pusey 1972). For these 
experiments, unlike those with gaussian light, a measurement of the intensity correla- 
tion function G(2)(~) provides additional information to the usual heterodyne measure- 
ment of the electric field correlation function G ( ~ ) ( T ) .  (This latter measurement is 
independent of the signal statistics.) It is therefore essential in these cases, if this addi- 
tional information is required, to measure the true intensity correlation function, rather 
than the clipped one, to avoid the (usually unknown) distortions introduced by clipping 
nongaussian signals. Several methods of making such a measurement are possible in 
principle, among them, full digital correlation and uniform random clipping. In the 
latter the clipping level is selected at random, for each sample, from a uniform distri- 
bution; as will be shown later this process, under appropriate conditions, gives the 
true correlation function. A third method, which has been used for a number of years 
(Pusey and Goldburg 1971, Schaefer and Berne 1972), has commonly been assumed 
also to give the true correlation function. This is the technique of ‘scaling’ in which a 
one-bit signal is obtained by scaling the original photocount signal by a factors, chosen 
high enough that the probability of obtaining more than one scaled count per sampling 
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interval is negligible compared to the probability of obtaining one. As with single- 
clipped correlation, this one-bit signal is cross-correlated with the original one. 
Like clipping, scaling has the advantages, when compared to full correlation, of being 
a one-bit technique. In addition, for scaling the circuitry is considerably simpler than 
that required for uniform random clipping. 

A problem of particular interest at the moment is the utilization of photon correla- 
tion techniques for velocity measurements by light scattering. In certain such experi- 
ments we have encountered nongaussian light signals together with the requirements 
of high-speed electronic processing. We will not go into details of this work here, but 
we have recently obtained promising results using scaling, and have been motivated 
to attempt a rigorous justification of the method. In the following, we show that scaling 
approximates uniform random clipping, and that therefore it provides an estimate 
of the true intensity correlation function. This justifies the previous use of the method, 
and gives us full confidence in its application for this particular type of experiment. 

We first establish the relation between single-scaled and single-clipped correlation 
functions of photon arrivals. Consider a correlation system consisting of two channels 
separated in time by a delay T,  one recording the actual signal counts detected in a 
sample time T, the other recording only the arrival of every sth count. We assume that 
if two or more scaled counts are detected in a single sampling interval they will be 
recorded as a one, that is, we assume the scaler to be followed by clipping-at-zero 
circuitry. After a period of time Y, ms+r counts will have been detected with m 
recorded in the scaled channel and a remainder r < s- 1. If q(r) is the probability 
distribution of the remainder, the probability of recording one or more counts in 
the sample interval following 9- in the scaled channel is 

where p ( n ;  T )  is the probability of counting n photons in the time T. The joint proba- 
bility of recording one or more counts in the scaled channel and m counts in the other 
channel is thus 

wherep(n, m; T ;  T )  is the joint probability of counting n photons in the sample interval 
T at time t and m photons in a similar interval at time f + 7 .  The correlation function 
of photocounts scaled in one channel may then, with a little algebraic manipulation, 
be written 

s-1 

GL2)(~) = 2 q(s - k - 1)Gi2’(7) 
k=O 

where 
m a r  

G I C ‘ ~ ’ ( ~ )  = 2 2 mp(n,m; 7; T> 
m=O n = k + l  

(3) 

(4) 

is the single-clipped photocount correlation function. Equation (3) has also been 
obtained by Koppel(l972, private communication). Scaling in one channel, therefore, 
averages the single-clipped correlation function over a finite distribution of clipping 
levels. Intuitively we might expect q(r) to be uniform, in which case scaling becomes 
equivalent to uniform random clipping over the same distribution of clipping levels. 
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In this case equation (3) could be written 

If s is now chosen large enough that the second term in equation (5) is negligible 
compared to the first, Gs(2)(~)  becomes proportional to the full photocount auto- 
correlation function. The uniformity of q(r) is confirmed by the following analysis. 

For 9 9 T ~ ,  the coherence time of the light, the distribution of counts arriving 
within LT will be approximately poissonian. The probability of finding a remainder 
in excess of an integral number s of scaled counts will therefore be 

where iV = W / T  and E is the mean number of counts per sample time. For s > 1 
equation (6) may be rearranged, without approximation, to give 

4 ( r )  = - l f e x p ( -  N )  '-' 2 exp ( -  N cos - 2;k) cos (2i~k!-r) + n s i n Z ) ] .  S 
S l  k = l  

(7) 

The second factor in this expression decreases rapidly for large fl and a good approxi- 
mation to the distribution, for s > 2, is given by 

q(r)  [ 1 +2  exp( - N (  1 -cos:)) cos fz - msin - 
S S *I S 

Fors  d 4, equation (8) is uniform to better than 1 % for fl > 5. In the more interesting 
case of larger s, this degree of uniformity can only be obtained for n > 5s2/2r2. 

Although the most important applications of scaling are for nongaussian light, 
we can obtain helpful analytical results by considering scaling of gaussian light. In 
this case, for uniform q(r),  equation (3) becomes 

where g"'(T) is the normalized electric field correlation function. For equation (9) 
to differ from the true autocorrelation function by less than 1% due to the cut-off at  
s- 1 in the sum of equation (3), we must choose, for E 2 1, s 2 106. For this degree 
of precision, the time required for q(r) to become uniform following the occurrence 
of a scaled count is F 21 25 ET, which, in a typical experiment, is of the order of 
ET,. 

We have performed some measurements, using both scaling and clipping, of the 
exponential decay rate I? of fluctuations in (gaussian) 6328A light scattered at  an 
angle of 90" by a protein (haemocyanin) solution at a temperature of 24.7 k 0.1 "C. 
We used a 25-channel correlator with FT 2: 0.04. For each scaling or clipping level 
we performed 25 ten-second runs and obtained the means and standard deviations. 
The results are summarized in table 1. The results for clipping are in good agreement 
with the computer-simulation result of about 2% (Pike 1972). However an interesting, 
and possibly unexpected, finding is that (at least, for gaussian light), scaling at rela- 
tively small s is essentially as accurate as clipping, which in turn (for gaussian light) is 
comparable in accuracy to full correlation. We can attempt to explain this finding as 
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Table 1. Results of single-scaled and single clipped correlation of gaussian light 
produced by laser scattering from a protein solution. r i s  the decay rate of the field 
correlation function and ii is the mean number of photocounts per sample. 

1.04 S 10 4137 +79 1.9 
1.04 C 0 4158 k 7 6  1.8 
1.04 C 1 4161 +93 2.2 
4 4  S 40 4170+87 2.1 
4 4  C 4 4217 rt 57 1.4 

follows: it appears that the time F(N ET,) taken for q(r)  to become uniform 
following the occurrence of a scaled count, can be regarded as roughly the time 
between independent samples of the scaled correlation function. For E 2: 1, 
9 N T, which is approximately the same as the time ( -  1.8 T,) between indepen- 
dent samples in full correlation (Degiorgio and Lastovka 1971). In this case, therefore, 
in scaled correlation we obtain independent samples about as frequently as in full 
correlation. Further with ff N 1 and s = 10 we are cross-correlating signals with 
mean rates per sample interval of about 1 and 1/10 respectively. Theoretical calcula- 
tions show (Jakeman et a1 1971, figure 3) that in such a situation the expected error in  
r should not be far from the theoretical minimum. In addition, it is possible that the 
‘debunching’ effect of scaling (Pusey and Goldburg 1971) helps to decrease the error 
in I?. 

In conclusion, we have demonstrated theoretically that, under appropriate condi- 
tions, single-scaled correlation provides an excellent measure of the full photocount 
correlation function, regardless of signal statistics. For gaussian light this conclusion 
is supported by experiment. A single-clipped correlator can easily be converted for 
scaling by removing the reset input to the clipping gate. Alternatively the clipping 
circuitry can be preceded by a scaler. This latter approach allows quick selection of 
the optimum scaling level in any experiment: one chooses s such that the correlation 
counting rate is much greater for scaled-clipped-at-zero correlation, than for scaled- 
clipped-at-one correlation. The scaled-clipped-at-zero correlation function is then a 
good approximation to the full correlation function. 
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